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a b s t r a c t 

Background and objective: Alzheimer’s disease (AD) is a fatal neurodegenerative disease. Predicting Mini- 

mental state examination (MMSE) based on magnetic resonance imaging (MRI) plays an important role in 

monitoring the progress of AD. Existing machine learning based methods cast MMSE prediction as a sin- 

gle metric regression problem simply and ignore the relationship between subjects with various scores. 

Methods: In this study, we proposed a ranking convolutional neural network (rankCNN) to address the 

prediction of MMSE through muti-classification. Specifically, we use a 3D convolutional neural network 

with sharing weights to extract the feature from MRI, followed by multiple sub-networks which trans- 

form the cognitive regression into a series of simpler binary classification. In addition, we further use a 

ranking layer to measure the ranking information between samples to strengthen the ability of the classi- 

fication by extracting more discriminative features. Results: We evaluated the proposed model on ADNI-1 

and ADNI-2 datasets with a total of 1,569 subjects. The Root Mean Squared Error (RMSE) of our proposed 

model at baseline is 2 . 238 and 2 . 434 on ADNI-1 and ADNI-2, respectively. Extensive experimental results 

on ADNI-1 and ADNI-2 datasets demonstrate that our proposed model is superior to several state-of-the- 

art methods at both baseline and future MMSE prediction of subjects. Conclusion: This paper provides 

a new method that can effectively predict the MMSE at baseline and future time points using baseline 

MRI, making it possible to use MRI for accurate early diagnosis of AD. The source code is freely available 

at https://github.com/fengduqianhe/ADrankCNN-master . 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Alzheimer’s disease (AD) is a irreversible and chronic neurode- 

enerative disease that accounts for about 60% of all dementia 

ases [1] . Since the onset of AD is relatively late and the prevalence

ncreases sharply with age, it is listed as the four major health 

illers along with cardiovascular and cerebrovascular diseases, tu- 

ors, and brain diseases [2] . At present, there are about 90 mil- 

ion AD patients in the world, and it is estimated that the number 

ill reach 300 million in future [3] . Cognitive impairment, mem- 

ry impairment, language impairment and personality changes are 

he main clinical manifestations of AD [4] . It is precisely because of 

he concealment and high cost of treatment that the early diagno- 

is and intervention of AD are very important [5] . As an important 

aterial for the early diagnosis of certain brain diseases, magnetic 
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esonance imaging (MRI) has received more attention [6–8] and 

rovides an effective way to determine the stage of the subject in- 

luding Normal Control (NC), mild cognitive impairment (MCI), and 

D [9,10,33,34] . A lot of studies have tried to use the whole image

r specific regions of interest (ROI) in MRI to identify potential AD 

atients and predict the progression of AD for a specific subject 

11,12] . 

Recently, estimating clinical scores like Mini-mental state ex- 

mination (MMSE) of subjects in current time or future time us- 

ng MRI also becomes a hot topic in early AD diagnosis. MMSE 

s a 30-point questionnaire that is widely used to measure the 

ognitive status of dementia in clinical diagnosis [13] . There are 

ertain differences in the distribution of MMSE among subjects 

t different stages. Fox example, the MMSE of NC is between 24 

nd 30 (inclusive), and the MMSE score of AD is between 20-26 

14] . In the Fig. 1 , we show the MMSE’s distribution of subjects 

n ADNI-1 at four time points including baseline (BL), month06 

M06), month12 (M12) and month24 (M24). It can be seen the 

istribution of MMSE for all subjects is relatively concentrated at 

aseline. At 24 months, the range of MMSE distribution is 1-30, 
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Fig. 1. Distribution of subject with MMSE from ADNI-1 at four time points includ- 

ing Basline, Month06, Month12, and Month24. 
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hich shows that MMSE will change over time, and this variety 

or a specific subject is very useful for the early diagnosis of AD. 

he methods based on the structural MRIs for AD diagnosis could 

e divided into voxel-based morphology (VBM) methods and deep 

earning methods. We will introduce these two types of methods 

n the following. 

Most of VBM studies focus on the analysis of hippocampus vol- 

mes, cortex sickness, subcortical volumes, etc. [15,16] . Conven- 

ional statistical methods like SVM, Random Forest were used to 

uilding hand-crafted features and explored the difference in the 

rain between AD and NC. The common method is to split MRI 

can into multiple regions of interest and the feature like volume, 

hickness of ROI was computed as the input of machine learning 

odel [17,18] . Nevertheless, studies based on VBM and machine 

earning methods required professional software operation and a 

arge amount of expert knowledge [19] . 

Due to the superiority of deep learning in image classification, 

onvolutional neural network (CNN) [20] was also applied on MRI 

or AD diagnosis [21] . Several studies use 3D CNN to extract the 

mbedding features from the whole image in a data-driven man- 

er [22] . Duc et al. developed a 3-dimensional neural network ar- 

hitecture for joint disease classification and cognitive regression 

ased on functional MRI (fMRI). MMSE scores were achieved using 

inear square regression, support vector machine (SVM), bagging- 

ased ensemble regression [23] . Liu et al. proposed a weakly su- 

ervised model by constructing a weighted loss function based on 

he incomplete clinical scores [24] . Yang et al. build a model to 

xplore the relationship between MRI data and scores based on 

he deep polynomial network and SVM [25] . A 3D attention net- 

ork was proposed by Jin et al. to capture the candidate imag- 

ng biomarkers, classification of subject, and regression of clinical 

cores [26,27] . Liu et al. proposed a multi-task for classification of 

ubject and MMSE prediction simultaneously using MRI data and 

emographic information [28] . The joint learning of MMSE pre- 

iction and subject categories classification can further improve 

he performance of the model. In order to conduct a more precise 

nalysis of the subjects, many studies have explored multi-modal 

ata [29] , combining a variety of image information, clinical infor- 

ation, genetic information, etc. 

In addition to the prediction of MMSE directly, numerous stud- 

es are devoted to the prediction that whether it will produce a 
2 
ignificant decline in the future time [30] . These studies usually 

se the subject’s current visit status or collect multiple histori- 

al visit records to establish relationships between multiple visit 

ecords to predict future scoring status [37] . 

Although several methods have been proposed for predicting 

linical scores in the future using baseline MRI. The prediction of 

MSE is still an undetermined problem, mainly because (1) Anal- 

ses of high dimensional MRI data containing a large number of 

oxels is challenging work, especially the limited available training 

amples often leads to an over-fitted model. (2) Most of the exist- 

ng deep learning based methods formulate the MMSE prediction 

s a one-dimensional regression problem where the precise value 

ampling from a continuous signal ([0-29]). However, the MMSE 

alues have a nature of the ordinal relationship, which is not ex- 

loited in these regression models. (3) MRIs anatomical abnormal- 

ties of subjects with similar MMSE scores are relatively small, so 

t is necessary to find moderate and subtle changes in disease pro- 

ression. 

In this study, we propose a ranking CNN (rankCNN) based 

n the comparison of cardinality and individual for brain disease 

rognosis using subjects with MRI. A deep neural network with 

haring weights was used to extract the MRI feature, then the re- 

ression of MMSE is transformed into the muti-classication tasks 

ith multiple sub-networks with discrete MMSE values, which 

re rounded into 30 points labels [0,1,..,29], so that the correla- 

ion among the discrete MMSE points could be explored by jointly 

raining in an end to end CNN. Furthermore, to portray the sub- 

le changes between individuals, we constructed a ranking layer to 

orce the CNN to explore more discriminative information to im- 

rove the classication formulation. 

The main contribution of this study can be summarized as fol- 

ows: 

(1) Multiple sub-networks were proposed to transform the di- 

ect regression of MMSE into multi-classifications by exploring the 

elationship between the subject’s MMSE and cardinality. 

(2) The ranking information was exploited to compare the sam- 

les with various MMSE values, which could help the model find 

ut the subtle changes between individuals. 

(3) Our model achieves 2 . 23 of root mean square error (RMSE), 

nd 0 . 57 of Pearson’s correlation coefficient (CC) on ADNI-1, re- 

pectively. For the evaluation on ADNI-2, our model achieves 2 . 43 

f RMSE and 0 . 43 of CC, which indicates that our model is superior 

o several states of the art methods. 

. Methods 

The architecture of this network is shown in Fig. 2 . Our model 

ontains three main parts, including the feature extraction module, 

ultiple sub-classifications for the regression module, and subject 

anking layer. 

.1. 3D Convolutional neural network 

The feature extraction module is composed of multiple blocks 

nd each block unit consists of a 3D convolution layer, a batch 

ormalize (BN) layer for 3D feature map, a rectified linear unit 

ReLU) layer, and a 3D max-pooling layer. Although several activa- 

ion functions have been proposed to obtain high performance in 

ifferent architectures [31,32] , ReLU has been applied in this work 

ue to its computational efficiency. The 3D convolution performed 

n MRI was defined as following 

 

l 
j 
(x, y, z) = 

 

δx 

∑ 

δy 

∑ 

δz 

F l−1 
k 

(x + δx , y + δy , z + δz ) × W 

l 
k j 

( δx , δy , δz ) (1) 

here x, y, z is a 3D pixel coordinates of MRI, F (x, y, z) represents 

 specific pixel in MRI at position x, y, z . δx , δy , δz denotes the three 
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Fig. 2. The overall structure of our proposed model. The model structure consists of three main parts: a feature extraction module with sharing weights, multiple sub- 

classifiers for regression module, and a ranking layer. The output of the classifier is the distribution probability of the corresponding sequence position. The results of 

multiple classifiers are combined to form the final MMSE. 

Fig. 3. Given the true value of MMSE corresponding to the MRI of three subjects, 

and the corresponding sequence label Y . The red block indicates that the current 

position is 1, and the green block indicates that the current position is 0. 
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imensions of the convolution kernel. W k j is the weight between 

 

l−1 
k 

, the k th feature map in l − 1 layer, and u j , the jth feature map

n the lth layer. The last layer of the feature extraction module is 

 3D AvgPooling layer, which could converts the feature maps ex- 

racted from MRI into feature vectors. It is worth mentioning that 

ll MRIs share a same feature extraction module. 

.2. Sub-networks for cognitive regression 

Before introducing the classification of sub-networks, we first 

ntroduce how to construct the vector label based on the real 

MSE. Given a labeled training set D with N instances ( x i , l i ) , 

here x i denotes the i th subject’s MRI image and l i denotes 

he its MMSE, i ∈ [1 , N] . For the MRI image x i with MMSE l i ,

 i ∈ [0 , 1 , 2 , ..., 29] . As shown in Fig. 3 , since MMSE is a discrete se- 

uence, so we can transform it into a binary sequence Y consists 

f 0 and 1 [38,39] , so that the regression of MMSE can be formu-

ated as a series of binary classification problems. The vector label 

 is defined as the following: 

 

k 
i = 

{
1 i f ( l i > k ) 
0 otherwise 

(2) 
3 
here y k 
i 

is the label of x i at the k dimension, which denotes 

hether l i is greater than the cardinality k . k ranges from 0 to 29. 

or instance, given a subject’s MRI x with MMSE 18, the y consists 

f (1 , 1 , ... 1) n , n = 18 and (0 , 0 , .., 0) m 

, m = 12 . 

After the feature extraction module, we got the embedding fea- 

ure of each MRI. To complete the prediction of MMSE based on 

lassification, we have constructed multiple sub-classifiers, a net- 

ork composed of multiple fully connected layers. Since the same 

mbedding feature is used as the input of multiple sub-networks, 

he correlation among these distinct MMSE labels could be ex- 

lored by jointly training the sub-classifier. 

Each binary sub-classifier corresponds to a value in the vector 

abel. The output of k the classifier is the probability of whether 

he subject’s MMSE is greater than k . Each output of the sub- 

lassifier corresponds to a binary classification, the cross-entropy 

s employed as the loss function L k defined as 

 k = − 1 

N 

N ∑ 

i =1 

I( o i = y i ) log (p( o i | x i , W )) (3) 

here o i is the output of k th sub-classifier of the x i , W denotes 

he parameters of the sub-classifier. Although hybrid loss func- 

ions have been proposed in some recent works [35,36] , the cross- 

ntropy is nearly a default loss function and preferred due to its 

fficiency. 

Most of the original studies are directly regression MMSE, the 

 MSE is defined as 

 MSE = 

1 

N 

N ∑ 

i =1 

(y i − f ( x i ;W )) 
2 

(4) 

here f ( x i ;W ) and y i is the estimated MMSE and ground truth of 

 i respectively. Through multiple sub-classifiers, the mean square 

oss L is transformed into the sum of Multiple sub-classifiers’ loss 

unction. 

 rank −c = − 1 

N 

N ∑ 

i =1 

T ∑ 

t=1 

I(o t i = y t i ) log (p(o t i | x i , W 

t )) (5) 

here o t 
i 

and y t 
i 

is the predicted MMSE and ground truth of tth 

ask for x i . W 

t is the parameters of tth task. 

After multiple sub-classifiers, we need to convert the output re- 

ult into a real MMSE. We adopted two methods to complete the 

ransformation, one is to set the same threshold to decide whether 

o take 0 or 1 as the output for each classifier. The y is the output
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Table 1 

The number of subjects from two databases including 

ADNI-1, ADNI-2 at four time points BL, M06, M12 and 

M24. 

Data Diagnosis BL M06 M12 M24 

ADNI- 

1 

NC 229 215 200 178 

MCI 397 355 317 236 

AD 183 162 137 103 

Subject 809 732 654 517 

ADNI- 

2 

NC 184 169 158 127 

MCI 442 310 292 232 

AD 143 98 86 23 

Subject 769 577 536 382 

2

u

p

N

l

a

a

W

s

t

D

m

v

o

e

a

3

3

t

d

g

1

u

c

b

m

o

a

3

[

T

s

c

c

i

w

e

t

a

d

f the binary sub-classifier which is defined as 

 

i = 

{
0 

ˆ y i < ε 
1 

ˆ y i ≥ ε 
(6) 

here ε is the threshold. The final y is the sum of output. An- 

ther way is to directly sum up the output distribution of multi- 

le sub-classifiers without processing. The value obtained in this 

ay is continuous. In this way, the setting of the threshold can be 

voided, and the MMSE of the subject can be obtained in a more 

recise manner. The effects of these two methods will be discussed 

n the following section. 

.3. Ranking layers 

Based on the assumption that the MRI of subjects with sim- 

lar MMSE scores may have similar characteristics, we designed a 

anking layer to measure the similarities or differences between in- 

ividuals. Based on comparison with cardinality, the ranking layer 

ould explore ranking information between samples to force the 

NN extracting more discriminative features. Giving a input batch 

 x 0 , x 1 , ..., x b ) , where b denotes the batch size, we can split it into 

wo sub-batches ( x 0 , ..., x b/ 2 ) and ( x b/ 2 , ..., x b ) through batch de- 

oupling. The MRI of each corresponding position in two sub- 

ranches composes a pair ( x i , x j ) , which is used as the input of 

ur ranking CNN. We first define Cos i j for each paired MRI [40] . 

os i j = 

{ 

0 i f l i − l j < −φ
0 . 5 i f | l i − l j | ≤ φ
1 i f l i − l j > φ

(7) 

here the Cos i j is the target probability of x i is bigger the x j . Con- 

idering that the MMSE of the subjects may not be strictly equal, 

nd may fluctuate within a certain range, we set φ, φ ≥ 0 , denotes 

he soft margin for the paired MMSE. When the MMSE difference 

etween the subjects is within φ, we think they may be similar 

n feature representation. Cos i j = 0 . 5 represent that x i is the same 

MSE as x j . We define the P ( x i > x j ) using a logistic function 

hich denotes the probability the subject x i has a greater MMSE 

han x j . 

p i j = P ( x i > x j ) = 

1 

1 − e −( f ( ϕ i ) − f ( ϕ j )) 
(8) 

here ϕ i is the embedding feature extracted from MRI x i and f ( ϕ i ) 

enotes the branch output of the ranking layer, which was used to 

alculate the paired subject rank probability. Instead, it only uses 

he different information to supervise the training of the model. 

he loss function of the ranking layer is a binary cross-entropy 

 rank −s define as 

 rank −s = −Cos i j log p i j − (1 − Cos i j ) log (1 − p i j ) (9) 

.4. Total loss function 

We have designed a total loss function to effectively learn our 

roposed rankCNN, in which the Multiple sub-classifiers loss func- 

ion and the subject rank layer loss function were combined for 

odeling. The total loss L total is designed as 

 total = αL rank −c + βL rank −s (10) 

here α and β are hyperparameters that adjust the weights be- 

ween these two loss functions. It can be seen that the total loss 

unction is composed of multiple cross-entropy functions, includ- 

ng the comparison with the cardinality and the comparison be- 

ween individuals. 
4 
.5. Materials and image processing 

In this section, we will introduce the information of the subject 

sed in our study and the procedure of MR image preprocessing. 

The subjects’ MRI and MMSE information at different time- 

oint used in this study was obtained from Alzheimer’s Disease 

euroimaging Initiative (ADNI), which is available at http://adni. 

oni.usc.edu/ [41] . The statistic information of these datasets are 

vailable in Table 1 . Different numbers of subjects are available 

t different time points corresponding to the baseline time point. 

hen predicting the MMSE at future time points, we only predict 

ubjects with the baseline MRI. 

We first performed anterior joint (AC)-poster joint (PC) correc- 

ion on all MRIs, then registered all the MRIs into the same space. 

ue to the large number of invalid background areas in MRI, it 

ay affect the performance of the model. We removed the in- 

alid regions of each MRI and left the only area of the brain. In 

rder to eliminate the influence of the distribution between differ- 

nt MRIs, we resized MRI to the same resolution of 90 × 90 × 90 

nd adopted intensity normalization. 

. Results 

.1. Experimental setting 

To verify the effectiveness of the proposed model, following 

he experimental setting in [24,28,42,43] , we first use the ADNI-1 

ataset as the training set and evaluate with ADNI-2. In the second 

roup, we use ADNI-2 as the training set and evaluate with ADNI- 

. Our goal is to predict the mmse in BL and future time points 

sing BL MRI. We use RMSE and correlation coefficient (CC) as the 

riteria of the models. Our model is implemented with Pytorch li- 

rary and trained on 1 NVIDIA GeForce GTX 1080Ti GPUs with 11G 

emory. We have also performed t -test (with a significance level 

f 0 . 05 ) on the prediction results achieved by our model rankCNN 

nd the baseline model 3DCNN. 

.2. Comparison methods 

(1) SVM: We first use a nonlinear image registration algorithm 

44] to spatially normalize all MR images to the template space. 

hen CAT toolbox (http://dbm.neuro.uni-jena.de/cat/) was used to 

egment each MRI to gray matter (GM), white matter (WM), and 

erebrospinal fluid (CSF). The feature vector can be attained by lo- 

al GM tissue density. All these feature vectors were used as the 

nput of a support vector regression (SVR) for MMSE regression 

ith an RBF kernel. 

(2) 3D CNN: A multi-layer 3D convolutional is used to extract 

mbedding features from MRI. After, there is an AvgPooling layer 

o map the extracted features into a vector for each MRI. Finally, 

 fully connected layer is used to mapping the vector to the pre- 

icted MMSE. 

http://adni.loni.usc.edu/
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Table 2 

Results of RMSE and CC achieved by different models trained on the ADNI-1 dataset and evaluated 

on the ADNI-2 dataset. The terms denoted by ∗ means that the result of rankCNN are statistically 

significantly better than tested models ( p < 0 . 05 ) using pairwise t-Test. The best result is high- 

lighted in bold. 

Method 

RMSE CC 

BL M06 M12 M24 BL M06 M12 M24 

SVM 2.652 2.885 3.553 3.864 0.270 0.247 0.239 0.218 

3DCNN 2.748 2.805 3.516 3.623 0.332 0.235 0.255 0.381 

rankCNN-C 2.485 2.424 2.795 3.449 0.523 0.408 0.413 0.447 

rankCNN-CS 2.316 2.362 2.746 3.346 0.537 0.413 0.423 0.490 

rankCNN 2.238 ∗ 2.299 ∗ 2.578 3.300 ∗ 0.578 ∗ 0.435 ∗ 0.427 0.504 ∗
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(3) rankCNN-C: To investigate the influence of each component, 

e further compare ranking CNN without ranking layer. rankCNN- 

 refers to the model that uses only the data where the MMSE is 

ompared with the base and the predicted MMSE is the sum of the 

utput of multiple sub-classifiers with a threshold. 

(4) rankCNN-CS: Similar to the rankCNN-C, rankCNN-CS leave 

he cardinality comparison part while the predicted MMSE is the 

um of the output of multiple sub-classifiers without thresholds. 

.3. Results on ADNI-2 

Experimental results of model trained on ADNI-1 and evaluated 

n ADNI-2 were shown in Table 2 and Fig. 5 . We also report the

tatistical analysis using a paired t-Test (with a significance level 

f 0.05) on prediction results achieved by our rankCNN method 

nd other comparison methods in Table 2 . The distribution scatter 

lots of the predictions generated by our model were illustrated 

n Fig. 4 . The proposed model achieves Pearson’s correlation coef- 

cient (CC) of 0 . 578 at the baseline, higher than other methods. 

his result suggests that rankCNN could improve the learning per- 

ormance by exploring the ranking information. The performances 

f rankCNN at the two time-points of BL and M24 are better than 

hat of M06 and M12. This may be because, at the two time-points 

f M06 and M12, the MMSE of the subjects is in an unstable stage

ompared to BL and M24, which makes it difficult for the model 

o generate more accurate predictions. Result also indicates that 

ankCNN-CS performs better than rankCNN-C. This is because the 

um of multiple sub-classifiers makes the final MMSE value con- 

inuous, which brings the predicted value closer to the true value 

hile rankCNN-C needs to manually set the threshold. 

In general, our method shows a clear advantage compared to 

raditional SVM and simple 3D CNN methods in both RMSE and 

C. It can be seen rankCNN shows superiority at all four points 

han rankCNN-CS, which may be due to the additional information 

rom the comparison between individual samples. 

.4. Results on ADNI-1 

In this section, the model was trained on ADNI-2 and evalu- 

ted on ADNI-1 to further explore the effectiveness. We report the 

MSE and CC achieved by four different methods in Table 3 and 

ig. 5 , and denote the significantly better results of rankCNN with 

by using the pairwise t-Test ( p < 0 . 05 ) in Table 3 . The distribu- 

ion scatter plots were shown in Fig. 6 . 

Similar to the results on ADNI-2, that rankCNN achieves the 

igher CC of 0 . 485 and 0 . 459 respectively than rankCNN-CS at 

aseline and M24, while rankCNN-CS achieves the highest CC at 

06 and M12. These further show the fact that the MMSE changes 

etween subjects at these two time-points are relatively unstable, 

eading to negative feedback of the ranking layer on the ADNI- 

. Compared with other methods, rankCNN achieves the lowest 

MSE at four time-points. Similarly, we can see that rankCNN-C 
5 
erforms better than 3D CNN and SVM on ADNI-1, which further 

emonstrates the effectiveness of our method. For example, 3D 

NN has CC of 0 . 159 and 0 . 272 at BL and M12. The CC at two time- 

oints has been greatly improved by the performance of rankCNN- 

, reaching 0 . 441 and 0 . 374 . 

The results imply that comparing with cardinality is more ef- 

ective than direct regression for MMSE prediction. Comparing 

ables 2 and 3 , we find the proposed rankCNN achieves well re- 

ults on the ADNI-1 and ADNI-2 than other methods. Although all 

orrelations between predicted MMSE and ground truth are not 

igh, this method could provide some help on AD diagnosis to 

ome extent. 

Results on ADNI-1 and ADNI-2 are quite different, i.e. the model 

rained with ADNI-2 is lower than the one trained with ADNI-1. 

his situation is consistent with results from the existing study 

24,28] . The major reason is that ADNI-1 and ADNI-2 were ac- 

uired by 1.5T and 3.0T scanners, which leads to different imaging 

uality that directly affects prediction accuracy. 

.5. Comparison with state-of-the-art methods 

We compared the proposed methods with state-of-the-art 

ethods in the literature, including conventional methods and 

eep learning-based models. 

(1) Voxel: The Fast algorithm [45] in FSL was used to segment 

RI into three tissue types. A support vector regression (SVR) 

odel was construct based on GM tissue density in each voxel for 

he prediction of MMSE. 

(2) ROI: This method registers the MRI to AAL template by us- 

ng a nonlinear registration algorithm to generate 90 manually la- 

eled ROI. The tissue volume of each ROI in GM is computed as a 

eature, which is further fed into SVR. 

(3) LMF: The method computes the 100-D local energy pattern 

46] from the patch extract from K landmarks [47,48] . The vector 

f the patch was concatenated and used as the input of SVR. 

(4) M 

3 TL: The method is a multi-modal multi-task learning 

odel that relies on the hand-crafted feature. A linear SVR was 

rained for MMSE regression at four time-points [49] . 

(5) DM 

2 L: DM 

2 L extracts the patches from the discriminative 

natomical landmarks and builds a deep multi-task learning model 

erforming the joint regression of MMSE and classification of sub- 

ects through CNN [28] . 

(6) wiseDNN-IS: Similar to the DM 

2 L, wiseDNN-IS further ex- 

racts the small scale image patches from landmarks and devel- 

ps a weakly supervised densely deep model for the prediction of 

MSE [24] . 

We compared the result of proposed method with above state- 

f-the-art methods ( Table 4 and Fig. 7 ). Results indicate that the 

roposed rankCNN outperforms the M 

3 TL, DM 

2 L, and wiseDNN in 

erms of RMSE. For M 

3 TL and DM 

2 L, only results at baseline and

24 are available in their literature. Our method performs well in 

he evaluation at all time points. It achieves the highest CC at base- 
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Fig. 4. The distributions scatter plots of our model trained on the ADNI-1 dataset and evaluated on the ADNI-2 dataset at multiple time points. 

Fig. 5. Results of RMSE achieve by different methods at multiple time points. (a), (b), (c) and (d) are the results of models trained on ADNI-1 and evaluated on ADNI-2. (e), 

(f), (g) and (h) are the results of models trained on ADNI-2 and evaluated on ADNI-1. 

6 
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Table 3 

Results of RMSE and CC achieved by different models trained on the ADNI-1 dataset and evalu- 

ated on the ADNI-2 dataset. The term denoted by ∗ means that the result of rankCNN are sta- 

tistically significantly better than tested models ( p < 0 . 05 ) using pairwise t-Test. The best re- 

sult is highlighted in bold. 

Method 

RMSE CC 

BL M06 M12 M24 BL M06 M12 M24 

SVM 2.889 3.664 4.405 5.821 0.104 0.219 0.220 0.186 

3D CNN 2.622 3.151 4.027 5.208 0.159 0.272 0.315 0.363 

rankCNN-C 2.640 3.303 3.885 5.061 0.441 0.398 0.405 0.374 

rankCNN-CS 2.451 3.234 3.997 5.075 0.437 0.429 0.437 0.443 

rankCNN 2.434 ∗ 3.068 3.908 4.981 ∗ 0.485 ∗ 0.404 0.409 0.459 ∗

Fig. 6. The distributions scatter plots of our model trained on the ADNI-2 dataset and evaluated on the ADNI-1 dataset at multiple time points. 

Table 4 

A summary table for the comparison of the RMSE and CC achieve by our method and other methods reported in several literature. 

All models are trained on ADNI-1 and evaluated on ADNI-2. The best result is highlighted in bold. 

Reference Method 

RMSE CC 

BL M06 M12 M24 BL M06 M12 M24 

Baron et al. (Voxel) [45] GM Density + SVR 2.730 3.349 3.467 3.457 0.309 0.254 0.233 0.146 

Zhang et al. (ROI) [49] ROI + SVR 2.782 3.315 3.483 3.503 0.306 0.405 0.423 0.265 

Zhang et al.(LMF) [47] Landmark + SVR 2.754 3.178 3.791 3.594 0.331 0.405 0.423 0.364 

Zhang et al. (M 

3 TL) [49] Multi-Modal 4.740 – – 5.853 0.504 – – 0.445 

Liu et al. (DM 

2 L) [28] Multi-Channel 3.073 – – 4.625 0.565 – – 0.518 

Liu et al.(wiseDNN) [24] Weakly Supervised 2.415 3.166 3.290 3.907 0.538 0.564 0.526 0.477 

proposed MMSE Ranking 2.238 2.299 2.578 3.300 0.578 0.435 0.427 0.504 

7 
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Fig. 7. Comparison of RMSE achieved by our methods and the methods reported in several literature at multiple time points. 

Fig. 8. Discuss on the effects of different hyperparameters including the threshold of sub-network, the threshold of ranking layer and the hyperparameter of loss function. 
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ine, and is only slightly lower than wiseDNN at M06 and M12. The 

C of our model at M24 is lower than DM 

2 L, but slightly higher

han wiseDNN. 

. Discussion 

In the following, we will discuss the influence of some parame- 

ers and then present the limitation and future work of this paper. 

.1. Effects of the threshold of sub-networks 

The threshold in each muti-classification of rankCNN-C is gen- 

rally set to 0 . 5 . To further explore the effectiveness of this thresh- 

ld, we set different thresholds and report the RMSE changes of 

he model on ADNI-1 and ADNI-2 in Fig. 8 (a). We find that the

ffect of the model first gets better and then gets worse, as the 

hreshold increases. If the threshold is too high or too small, it 

ill reduce the performance of the model. The reason may be that 

hen the threshold is set too large, the sub-classifier loses some 

on-significant samples for the task at a specific location. On the 

ontrary, if the threshold is too small, the sub-classifier will intro- 

uce some wrong information. In our experiments, the proposed 

odel yields the best effect when the threshold is set to 0.6. 

.2. Discussion on the threshold of ranking layer 

We now evaluate the effects of the threshold in the ranking 

ayer. The threshold needs to be set manually because the MMSE 

cores between different individuals may not be strictly equal, and 

here may be certain differences. We adjusted different thresholds 

nd reported the results in Fig. 8 (b). We found that when we set

he rank threshold to 3, the RMSE of the model is the smallest. 

hen the threshold is set too small or too large, the performance 

f the model will decrease. The reason is that a large threshold 

ay impair the ability to mine more similar samples. On the con- 

rary, a small threshold may cause the wrong classification of con- 

used samples. 

.3. Discussion on the hyperparameter of loss function 

The loss function of our proposed model consists of two parts, 

ne part is the cross-entropy loss sum of sub-classifiers used to 
8 
ompare the subject’s MMSE with cardinality, and the other part 

s the cross-entropy loss used for comparison between individu- 

ls. We adjusted the weights between the two loss functions, and 

he results were reported in Fig. 8 (c). It can be seen when the 

eight ratio of the two loss functions is 1, the RMSE of the model 

eaches the lowest, which further verifies the comparable impor- 

ance of the two modules and the effectiveness of each module we 

roposed. 

.4. Limitation and future work 

This paper still has several limitations as follows: (1) We ex- 

ract features from the full MRI image, which inevitably introduces 

oo much useless information and may hamper the performance of 

he model. (2) We did not consider the different data distribution 

etween ADNI-1 and ADNI-2 datasets due to the different imaging 

anner of these two data sets, resulting in subtle inconsistent in 

xperimental results. (3) We analyzed each time node separately 

nd did not integrate the historical records of a subject. Analyzing 

he changes of a subject’s MRI over time may be more helpful in 

he early diagnosis of AD. As future work, we will continue this 

tudy in the following: (1) We can build a model that combines 

ocal features and global features extracted from MRI, i.e. extract 

eatures at the ROI, patch, and whole image levels respectively for 

ubject classification and MMSE prediction. (2) Integrate the sub- 

ect’s historical record information to construct a sequence net- 

ork, i.e. build a recurrent neural network model to extract more 

iscriminative features in a multi-sequence MRI for a specific sub- 

ect. (3) In addition to the prediction of MMSE, we also apply the 

odel to other clinical scores such as ADAS-Cog11, ADAS-Cog13, 

nd CDR-SB. (4) Based on MRI analysis, we will add more clinical 

nformation, genetic information, and prior knowledge to construct 

 comprehensive AD diagnosis method. 

. Conclusion 

In this paper, we proposed a rankCNN for MMSE prediction 

t the baseline and the future time-points for AD diagnosis. In 

he proposed method, we first use a comparison between MMSE 

nd cardinality to complete the regression of MMSE through muti- 

lassification. We further use the ranking layer to explore the rela- 
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ionship between the subject with different MMSE. We evaluated 

he proposed model on ADNI-1 and ADNI-2 datasets with 1569 

ubjects. Experiment results suggest that the proposed method de- 

ivers superior performance compared with other state-of-the-art 

pproaches and can effectively predict the MMSE at baseline and 

uture time points using MRI images collected at baseline. In gen- 

ral, our method could provide the possibility of early AD diagno- 
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